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Effects of network structure and routing strategy on network capacity
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The capacity of maximum end-to-end traffic flow the network is able to handle without overloading is an
important index for network performance in real communication systems. In this paper, we estimate the
variations of network capacity under different routing strategies for three different topologies. Simulation
results reveal that the capacity depends on the underlying network structure and the capacity increases as the
network becomes more homogeneous. It is also observed that the network capacity is greatly enhanced when

the new traffic awareness routing strategy is adopted in each network structure.
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I. INTRODUCTION

The research on the efficiency of transport of information
in social, biological, and electronic communication systems,
etc., is significantly important in different aspects of natural
science and more generally in its practical application. One
of the main focuses is how to make the flow of the network
most efficient, which means to maximize the network capac-
ity at the same time minimizing the delivery time and loss of
information. There are two ingredients, the local or global
topological properties of the network and the microscopic
dynamical process involved in the information transportation
procedure, which are believed to affect those complex dy-
namical processes. Also, the efficient performance of these
systems 1is affected by the ability of the system to avoid
congestion. It is thus of great interest to study the effect of
network topology on traffic flow and to find out optimal
strategies for traffic routing on certain network structure.

A great number of works in the subject of dynamics of
traffic transitions has been carried out for regular and random
graphs [1-8]. However, recent works reveal that many real-
istic networks, as diverse as the Internet, the WWW, the
social and biological networks are complex with scale-free
and small-world features, which are far from being com-
pletely regular or completely random [9-14]. The well estab-
lished model by Barabdsi and Albert (BA), which character-
izes the scale-free nature of many networks, pointed out that
the probability a given node has k connections with other
nodes follows a power law distribution P,~k~?. Based on
the BA model and its extensions [15-17], the dynamic pro-
cesses taken place on these complex topologies have been
investigated extensively, such as the search or congestion
process in networks [18-22].

So far, the analysis of network structure and dynamics has
been mostly separated from each other. Only very recently, a
first coupling of these issues has become a topic of investi-
gation [23-29]. It is not surprising of the result that the effect
of the same mechanism for traffic flow varies from case to
case, depending on the underlying network structure. The
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topological transitions in network from random to scale-free
affects the load distribution and the network performance
distinctly.

The new insight along the way of optimal network struc-
ture for network efficiency promotes a more practical re-
search on complex networks. Investigation of optimal net-
work topology as for effective packet transportation has
become an important problem in recent network research,
which is a useful guide to design computer or traffic net-
works since the nature of the optimal network topology
[30-32]. Nevertheless, it will be costly or even impossible to
change the real network topology arbitrarily. For example, it
is out of the question to change the Internet topology into a
starlike or homogeneous-isotropic topology so as to optimize
search processes [30].

In contrast, it is comparatively easy to adapt the routing
protocols in real communication networks. The performance
of the communication systems can be upgraded by imple-
menting the more appropriate routing protocols without
changing the underlying network structure, which is more
realizable in practice [33-35].

In this paper, we analyze the effects of network structures
and routing protocols on network performance. Concerning
the data-traffic performance, the estimate on the throughput,
i.e., the capacity of maximum end-to-end traffic flow the
network is able to handle without overloading is given under
different network topologies. It reveals that capacity depends
on the underlying network structure, which increases as the
network becomes more homogeneous. Since the shortest-
path routing strategy is not aware of the local traffic of the
network, we design and implement a new routing strategy by
incorporating local traffic information into the basic shortest
path routing policy. We find that the network capacity is
greatly enhanced when the new traffic awareness routing
strategy is adopted.

The structure of the paper is as follows: The network
model is described in Sec. II. In Sec. III, the traffic aware-
ness routing strategy is introduced with the detailed dynamic
process of packet transportation. Simulations and explana-
tions are presented in Sec. IV. The conclusion is given in
Sec. V.
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II. NETWORK MODEL

It would be natural to regard the real network as a random
graph at first sight. However, real networks show statistical
properties that are far from being completely random. A large
number of networks, including the World Wide Web, the
Internet or the metabolic networks, have typically power law
degree distribution with exponents between 2 and 3 [12].
Though some other networks display an exponential tail, the
degree distribution deviates significantly from the Poisson
distribution expected for a completely random graph. In this
paper, we grow three different network topologies from the
more heterogeneous one to the completely random graph for
comparison.

The completely random graph is constructed according to
the well known model proposed by Erdos and Renyi [36].
A network with N labeled vertices is connected by M edges,
which are chosen randomly from Cfl;l\/(N—l)/Z] possible edges.

Also, we grow a scale-free model introduced by Barabasi
and Albert where a fixed number of vertices are added
at each time and are linked to the growing graph with
a linear attachment probability, which shows the power-law
degree distribution P(k) ~ k™Y with y=3 [10]. A more hetero-
geneous network is constructed according to the model of
Goh [16]. In this model, N vertices are labeled by an integer
i (i=1,...,N) and each vertex is assigned the weight
p;=i"% where « is a control parameter in [0,1). The two
different vertices i,j are selected with probabilities equal to
the normalized weight p;/Zp, and p;/Zp,, respectively, and
add an edge between them unless one exists already. This
process is repeated until mN edges are added in the network.
The result network shows a degree distribution P(k) ~k™”
with y=(1+a)/a. Thus, we can obtain various exponent y in
the range 2 < y<<o0 by varying « in [0, 1). This model can be
viewed as an extension of the standard ER model with pre-
scribed degree distribution but completely random with re-
spect to all the other features. In our paper, we grow the
model with exponent y=2.1.

Though the networks we consider have different degree
distributions, they are characterized by the same number of
available resources, which means the same number of verti-
ces and edges.

III. DYNAMICAL PROCESS AND ROUTING STRATEGIES

Real communication systems or traffic systems usually
involve finite queue length and limited process rate of each
node. Thus packets will be hampered in the routers’ queue
while going from origin to destination, causing time delays.
At each time step, the probability for node i to generate a
packet is \;. We assume A;=A\,=---=Ay=\ for simplicity.
Also, it is assumed that each node has different capabilities
in delivering and handling information packets according to
its degree, that is, at each time step, each node can deliver at
most k; packets one step toward their destinations. Once a
packet is generated, it is placed at the end of the node queue,
which contains the undelivered packets created at current
time steps or transmitted from the other nodes. At each time
step, the node processes k; packets in its queue based on the
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First-In-First-Out rule and selects the next routing node for
the packets according to the given routing strategy. This pro-
cedure applies to every node in the network at the same time.
Once the packet reaches the destination, it is removed from
the network.

A basic and widely used routing strategy is the shortest
path routing. Each node in the network delivers a packet by
forwarding it to one of the node’s neighbors that is closest to
the destination of the packet. This strategy is simple but has
its limitation in that it takes no account of the node state it
delivers to. Even if the selected node is overloaded and pack-
ets will wait a long time to be processed at that node, this
routing policy makes no change.

In order to make the routing policy be aware of the traffic
of the network, we design a traffic awareness routing strategy
as follows. Let us assume that node s holds a packet that
should be delivered to node ¢. We first compute the weight H;
of a neighbor node i of s. This weight, which can be viewed
as the cost of each packet to pass through node i, is defined
as

E; L;
H=a +(l1-a) 0sa<l, (1)
> E > L

jegli) Jjegli)

where g(i) is the set of all the neighbor nodes of i, L; is the
shortest path length from node i to target ¢, E;=c;/k; is the
estimated waiting time at node i. The queued packet infor-
mation c; is changed dynamically in each time step according
to the local traffic dynamics. However, the process rate k;,
which is defined as the maximum number of packets that
node i can deliver in each time step, is assigned appropriately
according to the node degree and remains unchanged during
the simulation. In real communication networks, different
nodes certainly have different ability to forward packets and
it is reasonable to believe that the highly connected nodes
will have high probability to have large process rate k;. How-
ever, it has been assumed in Ref. [33,34] that each node has
the same capability of delivering packets. Since the less con-
gested node is likely to be less efficient in processing pack-
ets, the packet will have more chance to be trapped in such
node if it is delivered only by the knowledge of queued
packets number c; as adopted in Refs. [33,34]. In the special
case of kl:kj for all i,j=1,...,N, our definition reduces to
that in Refs. [33,34]. After computing the weight of each
neighbor node of node s, we select the next router node
among the neighbors which has the minimum weight. If
there is more than one node with the minimum weight, we
select one of them randomly. The rest of the algorithm re-
mains the same as before, i.e., at each time step, the weight
H; will be calculated dynamically according to the current
traffic information in the network and the minimum cost
node is selected as the next router.

Given a specific network model, the critical traffic load
Nerie 18 defined as the maximum packet creation rate A, where
on average, the flux of newly created packets is equal to the
flux of the delivered packets. When N\ <A, the network is
in the subcritical phase, where the newly created packets is
less than or equal to the delivered packets. The number of
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packets W(r) in the network is balanced, leading to a steady
free traffic flow. When N\ >\, the number of packets W(z)
in the network is increased with time and will lead to traffic
congestion. This per-node quantity A is related to the
overall-network capacity T=A_;/N, which is denoted as the
end-to-end capacity of the network. It describes the maxi-
mum number of end-to-end traffic flows that can be com-
pleted per time step without network overloading. Since we
fix the network size N=1000, we simply use the value of the
critical traffic load A to characterize the overall-network
capacity 7.

With all the generic traffic simulations now at hand, the
natural questions are: How to characterize the critical traffic
load? How does the network capacity depend on the network
topology and how does it vary with the interplay between
routing strategy and network structure?

IV. SIMULATIONS AND EXPLANATIONS
We use the order parameter ¢ to characterize the transition

1 W@

i ?
where W(r) is the total number of packets in the network
at time ¢. In particular, for N <\, the packets in the net-
work are balanced, leading to a steady free traffic flow. For
N> N the number of packets grows linearly in time. Fig-
ures 1(a), 1(c), and 1(e) plot the total number of active pack-
ets as a function of time steps corresponding to three differ-
ent topologies, i.e., the static scale-free network with
exponent y=2.1, the BA scale-free network with exponent
y=3, and the E-R random network, respectively. In each
figure, three curves are plotted, each representing a different
congestion phase that is subcritical, around-critical and su-
percritical. It can be seen from all the figures that W(z) re-
mains nearly unchanged when N <A, however, it grows
continuously with time # when A >\, With the increasing
of N above the critical value, the curve of W(z) becomes
steeper as time goes on.

Figures 1(b), 1(d), and 1(f) summarize the end-to-end ca-
pacity results by the phase transition of the traffic load \. For
each network model, & represents an average over an en-
semble of 10 network realizations. The simulation time of
5000 time steps for each realization is sufficient for the de-
termination of A For clarity, we amplify k times of & and
only use the data of the last 1000 time steps when the net-
work traffic flow can be viewed as stable. Firstly, by adopt-
ing the shortest path routing strategy, it is found that the
critical traffic load \;,=0.022 for the static scale-free net-
work with exponent y=2.1. The critical value is slightly in-
creased to A= 0.026 when network structure becomes BA
scale-free network with exponent y=3. When the network
topology evolves to the most homogeneous E-R random
graph, the critical value is increased to A= 0.16. Though
the first two networks can both be regarded as scale-free,
they have different degree distribution exponents. There are
some hub nodes, each connecting to almost 30% of the
whole network vertices, that exist in the static scale-free net-
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FIG. 1. (a),(c),(e) The total number of active packets as a func-
tion of time steps with different packet creation rate. (b),(d),(f) The
phase transition of the traffic load N with the shortest path routing
policy. The network model is the static scale-free network with
exponent y=2.1, the BA scale-free network with exponent y=3,
and E-R random network, respectively, from top to bottom.

work with exponent y=2.1. However, in the BA scale-free
network, the hub nodes connect to only 15% of the whole
network vertices that are relatively less than the first one,
which reflects the less heterogeneous of the BA scale-free
network than the first topology. Thus, it is manifested that the
detail variations of the network structure affect the value of
Agie- Due to the intrinsic difference of the random and the
scale-free topology, the value of A varies more clearly.
This outcome evidently shows that network structure has a
prominent influence on the network capacity with respect to
data traffic. In particular, random networks seem to have
larger network capacity than scale-free networks under the
shortest path routing algorithm, which is similar with the
results shown in Ref. [20]. Based on the shortest path routing
strategy, packets are forwarded to the node along the shortest
path with no awareness of the queue length or process rate
information of the node. Since the scale-free network has
wider distribution of vertex betweenness, which is the mea-
sure of the number of shortest path pass through the vertex,
the packets will have greater chance to be forwarded to the
most connected node, leading to the accumulation of packets
in such nodes and to the network congestion. However, in
the homogeneous random network, packets will be distrib-
uted more dispersedly due to the absence of the hub nodes,
which ameliorates the local jam in such node and prevents
the packet accumulation in the whole network, leading to the
larger network capacity. Thus, it is natural to ask if we could
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FIG. 2. The value of the critical traffic load A\, with different o
set in the traffic awareness routing policy under the static scale-free
network with exponent y=2.1. @=0 is corresponding to the shortest
path routing under the same network structure.

design a more effective routing protocol to argument the net-
work capacity without changing the network structure.

Now we consider the traffic awareness routing strategy
introduced in the last section. It is easy to see that when
a=0, the traffic awareness routing strategy equals the short-
est path routing. Furthermore, by tuning the value of «, the
weight of E; and L; will vary and the effectiveness of this
routing strategy will also change [37]. With each network
structure, we adopt a set of values of « in the traffic aware-
ness routing and investigate its effect on the critical traffic
load A From Figs. 2 to 4, the values of the critical traffic
load A\ with different « set in the traffic awareness routing
policy in each network structure are plotted. It can be seen
that in all the figures, the critical traffic load A is gradually
increased until the optimal parameter « is reached, while at
the same time A also reaches its maximal. After the opti-
mal « is reached, A\, is decreasing because of the less effi-
cient of the routing strategy compared with the optimal «
being set. In Fig. 2, it can be seen that the critical traffic load
Nerie 18 increased from 0.022 to the maximum 0.05 for the
static scale-free network with exponent y=2.1 under the traf-
fic awareness routing strategy, which is almost three times
larger than that of the shortest path routing strategy. For the
BA scale-free network, the augment is much more distinct in
Fig. 3, which is increased from 0.026 to the maximum 0.16,
nearly a six times enhancement. Though the homogeneous
nature of the random graph makes it have a larger network
capacity under the shortest path routing strategy, its capacity
can still be upgraded under the new routing policy, with an
increment of A ;, from 0.16 to the maximum 0.39 as shown
in Fig. 4. Since the traffic awareness routing strategy
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FIG. 3. The value of the critical traffic load A, with different o
set in the traffic awareness routing policy under the BA scale-free
network with exponent y=3. =0 is corresponding to the shortest
path routing under the same network structure.
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FIG. 4. The value of the critical traffic load A with different o
set in the traffic awareness routing policy under the E-R random
network. a=0 is corresponding to the shortest path routing under
the same network structure.

achieves better tradeoff between the waiting time and the
path length information of the next route node, it will for-
ward the packets to the node that is most efficient in trans-
mission at each time step. Thus, packets will have more
chance to be delivered to the destination through the neigh-
bors of the jamming nodes that are usually the most con-
nected ones. By avoiding the packets jamming locally, this
routing strategy successfully overcomes some side effects
caused by the essential of the network structure and enhances
the network capacity for each network topology. In addition,
we want to mention that, although it seems that the network
capacity under the traffic awareness routing strategy with
different parameter « are all larger than it is under the short-
est path routing from Figs. 2 to 4, the tendency of the better
performance of the traffic awareness routing strategy will not
hold when « approaches 1. Since the packets will travel such
longer paths that do not compensate the time they would lose
waiting on the congested nodes, the decrease of the network
capacity is straightforward [37].

It is also observed that the maximum enhancement of the
network capacity, which is computed as the difference of the
critical traffic load A5, between the shortest path routing and
the traffic awareness routing with optimal « being set, varies
with the network structure. It seems that the BA scale-free
network achieves almost two times increment of the capacity
compared with the other two topologies. Since when network
becomes most heterogeneous, the local jam induced by the
hub nodes can be so severe that the packets cannot be redi-
rected to the neighbor nodes efficiently even by the traffic
awareness routing strategy, consequently inhibits the further
enhancement of the network capacity, which is manifested
by the less improvement factor of the static scale-free net-
work. Also, for the most homogeneous random graph, the
neighbors of the jamming node are very likely to be jammed
too, thus the packets will also get trapped in the neighbors,
leading to less efficiency of the routing algorithm compared
to the BA scale-free network, which is shown by less en-
hancement of the network capacity in the same way. The
more effectiveness of the traffic awareness routing strategy
in BA scale-free network exhibits here is consistent with the
results mentioned in [23,24], in which it is pointed out that
BA scale-free network ensures efficient transportation pro-
cess by some local optimization. Nevertheless, we believe
that an optimal topology may exist between the most hetero-
geneous and the most homogeneous network structure,
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which achieves the largest upgrade of its capacity under the
traffic awareness routing strategy.

V. CONCLUSION

In this paper, we estimate the variations of network capac-
ity under two different routing strategies for three different
network topologies. It is shown that the capacity of each
network depends on the underlying network structure with
the maximum capacity achieved in the most homogeneous
random graph. By adapting to a traffic awareness routing
strategy, the network capacity is greatly improved in each
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topology compared with the basic shortest path routing
policy. Considering the feasibility and the cost of changing
the real network topology to enhance the network perfor-
mance, it is comparatively easy to adjust the routing proto-
cols in real communication systems.
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